Majalah Geografi Indonesia (Sep 2019)

Perbandingan Akurasi Metode Inverse Distance Weighting dan Kriging dalam Pemetaan Kedalaman Muka Airtanah

  • Sadewa Purba Sejati

DOI
https://doi.org/10.22146/mgi.41473
Journal volume & issue
Vol. 33, no. 2
pp. 49 – 57

Abstract

Read online

Setiap metode interpolasi spasial yang disediakan oleh sitem informasi geografis (SIG) memiliki akurasi yang berbeda. Oleh karena itu pengetahuan terhadap akurasi metode tersebut sangat diperlukan oleh pengguna SIG. Penelitian ini dilakukan untuk mengetahui perbandingan akurasi metode interpolasi spasial inverse distance weighting (IDW) dan Kriging untuk menghasilkan informasi kedalaman muka airtanah. Penelitian ini menggunakan 65 data primer kedalaman muka airtanah yang diperoleh dengan metode systematic random sampling. Hasil interpolasi setiap metode kemudian dibandingkan tingkat akurasinya, yaitu dengan melihat nilai root mean square error (RMSE) dan persentase kesesuaian sampel validator terhadap model yang dihasilkan. Pengolahan data menunjukkan bahwa model interpolasi terbaik pada metode Kriging diperoleh melalui varian Ordinary Kriging. Metode tersebut menghasilkan model dengan nilai RMSE sebesar 2,98 dan kesesuaian sampel validator sebesar 50%. Sedangkan model interpolasi terbaik pada metode IDW diperoleh melalui parameter power (p) dengan nilai 3. Metode tersebut mengasilkan model interpolasi dengan nilai RMSE sebesar 3,233 dengan kesesuaian sampel validator sebesar 40%. Berdasarkan perbandingan diperoleh kesimpulan bahwa metode Kriging lebih akurat jika dibandingkan dengan metode IDW karena menghasilkan nilai RMSE yang lebih kecil dan persentase kesesuaian sampel validator terdahap model interpolasi lebih besar. Every spatial interpolation method provided by geographic information system (GIS) has different accuracy. Therefore, it’s very necessary for GIS users to know the accuracy of every method. This study was performed to determine the comparison of accuracy of inverse distance weighting (IDW) and Kriging spatial interpolation methods to produce information on depth to water table. This study used 65 primary data of depth to water table obtained using systematic random sampling method. The interpolation result of the accuracy of every method was compared by assessing root mean square error (RMSE) and percentage of consistency of validator sample with the resulting model. Data processing showed that the best interpolation method of Kriging was Ordinary Kriging variance. The method produced a model with RMSE value of 2.98 and validator sample consistency of 50%. The best interpolation method of IDW method used power (p) parameter with a value of 3. The method produced an interpolation model with RMSE value of 3.233 and validator sample consistency of 40%. Based on the comparison, it was concluded that Kriging method was more accurate than IDW method because it had smaller RMSE value and bigger percentage of validator sample consistency to interpolation model.

Keywords