Molecules (Jul 2024)

Thermoelectric Properties Regulated by Quantum Size Effects in Quasi-One-Dimensional γ-Graphdiyne Nanoribbons

  • Mi Li,
  • Qiaohan Liu,
  • Yi Zou,
  • Jingang Wang,
  • Chuanqiang Fan

DOI
https://doi.org/10.3390/molecules29143312
Journal volume & issue
Vol. 29, no. 14
p. 3312

Abstract

Read online

Using density functional theory combined with the first principles calculation method of non-equilibrium Green’s function (NEGF-DFT), we studied the thermoelectric (TE) characteristics of one-dimensional γ-graphdiyne nanoribbons (γ-GDYNRs). The study found that the thermal conductivity of γ-GDYNRs has obvious anisotropy. At the same temperature and geometrical size, the lattice thermal conductivity of zigzag-edged γ-graphdiyne nanoribbons (γ-ZGDYNRs) is much lower than that of armchair-edged γ-graphdiyne nanoribbons (γ-AGDYNRs). We disclose the underlying mechanism for this intrinsic orientation. That is, γ-AGDYNRs have more phonon dispersion over the entire frequency range. Furthermore, the orientation dependence increases when the width of the γ-GDYNRs decreases. These excellent TE properties allow armchair-edged γ-graphdiyne nanoribbons with a planar width of 1.639 nm (γ-Z(2)GDYNRs) to have a higher power factor and lower thermal conductivity, ultimately resulting in a significantly higher TE conversion rate than other γ-GDYNR structures.

Keywords