Revista Integración (May 2015)

Sobre la continuidad de la aplicación raíz cuadrada de isomorfismos no negativos en espacios de Hilbert

  • Jeovanny de Jesus Muentes Acevedo

Journal volume & issue
Vol. 33, no. 1

Abstract

Read online

Sea H un espacio de Hilbert real (o complejo). Todo operador no negativo L ∈ L(H) admite una única raíz cuadrada no negativa R ∈ L(H), esto es, un operador no negativo R ∈ L(H) tal que R2 = L. Sea GL+S (H) el conjunto de los isomorfismos no negativos en L(H). Primero probaremos que GL+S (H) es una variedad de Banach (real). Denotando como L1/2 la raíz cuadrada no negativa de L, en [3] Richard Bouldin prueba que L1/2 depende continuamente de L (esta prueba es no trivial). Este resultado tiene varias aplicaciones. Por ejemplo, es usado para encontrar la descomposición polar de un operador limitado. Esta descomposición polar nos lleva a determinar los subespacios espectrales positivos y negativos de cualquier operador autoadjunto, y además, lleva a definir el índice de Máslov. El autor de este artículo da una prueba alternativa (y un poco más simplificada) de que L1/2 depende continuamente de L, y además, prueba que la aplicación R : GL+S (H) → GL+S (H) L → L1/2 es un homeomorfismo. Para citar este artículo: J.J. Muentes Acevedo, On the continuity of the map square root of nonnegative isomorphisms in Hilbert spaces, Rev. Integr. Temas Mat. 33 (2015), no. 1, 11-26.

Keywords