Nature Communications (Mar 2024)

Inhibition of 7-dehydrocholesterol reductase prevents hepatic ferroptosis under an active state of sterol synthesis

  • Naoya Yamada,
  • Tadayoshi Karasawa,
  • Junya Ito,
  • Daisuke Yamamuro,
  • Kazushi Morimoto,
  • Toshitaka Nakamura,
  • Takanori Komada,
  • Chintogtokh Baatarjav,
  • Yuma Saimoto,
  • Yuka Jinnouchi,
  • Kazuhisa Watanabe,
  • Kouichi Miura,
  • Naoya Yahagi,
  • Kiyotaka Nakagawa,
  • Takayoshi Matsumura,
  • Ken-ichi Yamada,
  • Shun Ishibashi,
  • Naohiro Sata,
  • Marcus Conrad,
  • Masafumi Takahashi

DOI
https://doi.org/10.1038/s41467-024-46386-6
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Recent evidence indicates ferroptosis is implicated in the pathophysiology of various liver diseases; however, the organ-specific regulation mechanism is poorly understood. Here, we demonstrate 7-dehydrocholesterol reductase (DHCR7), the terminal enzyme of cholesterol biosynthesis, as a regulator of ferroptosis in hepatocytes. Genetic and pharmacological inhibition (with AY9944) of DHCR7 suppress ferroptosis in human hepatocellular carcinoma Huh-7 cells. DHCR7 inhibition increases its substrate, 7-dehydrocholesterol (7-DHC). Furthermore, exogenous 7-DHC supplementation using hydroxypropyl β-cyclodextrin suppresses ferroptosis. A 7-DHC-derived oxysterol metabolite, 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), is increased by the ferroptosis-inducer RSL-3 in DHCR7-deficient cells, suggesting that the ferroptosis-suppressive effect of DHCR7 inhibition is associated with the oxidation of 7-DHC. Electron spin resonance analysis reveals that 7-DHC functions as a radical trapping agent, thus protecting cells from ferroptosis. We further show that AY9944 inhibits hepatic ischemia-reperfusion injury, and genetic ablation of Dhcr7 prevents acetaminophen-induced acute liver failure in mice. These findings provide new insights into the regulatory mechanism of liver ferroptosis and suggest a potential therapeutic option for ferroptosis-related liver diseases.