Oil & Gas Science and Technology (Jan 2020)
Effect of a modified nano clay and nano graphene on rheology, stability of water-in-oil emulsion, and filtration control ability of oil-based drilling fluids: a comparative experimental approach
Abstract
During the past decade, researchers have used different Nano-Particles (NPs) due to their unique characteristics for improving formulation of Oil-Based Drilling Fluids (OBDFs). This study is the first research that investigates the effect of a Modified Nano Clay (MNC), namely CLOISITE 5 and non-functionalized Nano Graphene (NG) on rheology, electrical/emulsion stability, and filtration control ability, as the main properties of OBDFs. Initially, five concentrations of both NPs (0.25, 0.5, 1, 1.5, and 2 wt%) were added separately into an NP-free OBDF (the base fluid). Then, rheological properties and electrical stability of all prepared fluids were measured at three 90, 140, and 180 °F temperatures. Moreover, filtration test was carried out under 500 psi (3447 kPa) differential pressure and exposed to 300 °F temperature for all fluids. Since experimentally measured shear stresses followed well both Herschel Bulkley (shear-thinning) and Bingham Plastic models, effects of temperature and the NPs concentration on both model parameters are investigated more deeply in the paper. Activation energies calculated from Arrhenius model showed that MNC is more effective than NG on reducing the dependency of apparent and plastic viscosities of the base fluid on temperature. MNC, due to its amphiphilic structure, significantly stabilizes water-in-oil emulsion at all temperatures and concentrations, but NG with high electrical conductivity reduces the emulsion stability. The nanofluids containing 0.5 wt% MNC and 0.25 wt% NG which have respectively 32.6% and 43.5% fewer filtrate volumes than the base fluid, were considered as the optimal nanofluids from controlling filtration into formation aspect. Finally, MNC is applicable to enhance the formulation of the OBDF through supporting its commercial viscosifier, emulsifiers, and fluid loss control agent, but the negative effect of NG on emulsion stability limits its application.