Annals of Glaciology (Apr 2021)
Optimization of hot-water ice-coring drills
Abstract
Hot-water ice-coring drills are often used to recover ice core samples from desirable depths in conjunction with full-scale hot-water drilling systems. However, the recovered cores exhibit varying qualities. The coring performance of a hot-water ice-coring drill depends significantly on the structure of the coring drill head (nozzle angle, diameter and number). To discover the most significant factor affecting ice-coring performance, nine types of drill heads were designed and tested in this study according to the orthogonal test design. Results indicated that the nozzle angle is the most significant factor that affects the coring quality and the optimal angle is ~15°. The number of nozzles is the second most important factor; a large number assists in obtaining ice cores of high quality. The optimal nozzle configuration to recover good quality cores are the following: the nozzle diameter, number of nozzles and nozzle angle are 1 mm, 60 nozzles and 15°, respectively, with the maximum diameter and 2 mm, 60 nozzles and 15°, respectively, with the maximum length.
Keywords