PLoS ONE (Jan 2015)
Evaluation of 3-dimensional superimposition techniques on various skeletal structures of the head using surface models.
Abstract
OBJECTIVES:To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data. METHODS:Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch) were tested using eight pairs of pre-existing CT data (pre- and post-treatment). These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D) between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses. RESULTS:There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05). The AC + F technique was the most accurate (D0.05), the detected structural changes differed significantly between different techniques (p<0.05). Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error. CONCLUSIONS:Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In the present study population, the BZ superimposition was comparable to AC, with the added advantage of being applicable to scans with a smaller field of view.