PLoS ONE (Jan 2018)

Effects of neuromuscular electrical stimulation on gait performance in chronic stroke with inadequate ankle control - A randomized controlled trial.

  • Yea-Ru Yang,
  • Pei-Ling Mi,
  • Shih-Fong Huang,
  • Shiu-Ling Chiu,
  • Yan-Ci Liu,
  • Ray-Yau Wang

DOI
https://doi.org/10.1371/journal.pone.0208609
Journal volume & issue
Vol. 13, no. 12
p. e0208609

Abstract

Read online

Neuromuscular electrical stimulation (NMES) has been used to improve muscle strength and decrease spasticity of the ankle joint in stroke patients. However, it is unclear how NMES could influence dynamic spasticity of ankle plantarflexors and gait asymmetry during walking. The study aimed to evaluate the effects of applying NMES over ankle dorsiflexors or plantarflexors on ankle control during walking and gait performance in chronic stroke patients. Twenty-five stroke participants with inadequate ankle control were recruited and randomly assigned to an experimental or a control group. The experimental group received 20 minutes of NMES on either the tibialis anterior muscle (NMES-TA) or the medial gastrocnemius muscle (NMES-MG). The control group received 20 minutes of range of motion and stretching exercises. After the 20 minutes of NMES or exercises, all participants received ambulation training for 15 minutes. Training sessions occurred 3 times per week for 7 weeks. The pre- and post-training assessments included spatio-temporal parameters, ankle range of motion, and dynamic spasticity of ankle plantarflexors during walking. Muscle strength of ankle dorsiflexors and plantarflexors as well as static spasticity of ankle plantarflexors were also examined. The results showed that the static and dynamic spasticity of ankle plantarflexors of the NMES-TA group were significantly decreased after training. Reduction in dynamic spasticity of ankle plantarflexors of the NMES-TA group was significantly greater than that of the NMES-MG group. When compared to the control group, the NMES-TA group had greater improvements in spatial asymmetry, ankle plantarflexion during push off, and muscle strength of ankle dorsiflexors, and the NMES-MG group showed a significant decrease in temporal asymmetry. In summary, NMES on ankle dorsiflexors could be an effective management to enhance gait performance and ankle control during walking in chronic stroke patients. NMES on ankle plantarflexors may improve gait symmetry.