Effects of spermine on the antioxidant status and gene expression of antioxidant-related signaling molecules in the liver and longissimus dorsi of piglets
T. Fang,
J. Zheng,
W. Cao,
G. Jia,
H. Zhao,
X. Chen,
J. Cai,
J. Wang,
G. Liu
Affiliations
T. Fang
Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
J. Zheng
College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
W. Cao
Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
G. Jia
Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
H. Zhao
Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
X. Chen
Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
J. Cai
Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
J. Wang
Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
G. Liu
Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
Previous studies showed that spermine could protect the organism from oxidative damage in vivo. However, in vivo information on the antioxidant-related underlying molecular mechanism of spermine is limited. In this experiment, we further evaluated the effects of spermine supplementation and extended spermine administration on the antioxidant status and antioxidant-related signaling molecules gene expression in the liver and longissimus dorsi of piglets. A total of 80 piglets were randomly distributed to two groups, that is, those with adequate nutrient intake administrated with spermine (0.4 mmol/kg BW) or those with restricted nutrient intake supplemented by saline. The piglets were fed in pairs for 7 h or 3, 6, or 9 days. The results are as follows: (1) spermine can promote the antioxidant capacity by increasing enzymatic antioxidant capacity, glutathione content and clearance of oxygen radicals; (2) spermine significantly increased the mRNA levels of enzymatic antioxidant substances, NF-E2-related nuclear factor 2, Kelch-like ECH-associated protein 1, and the mammalian target of rapamycin but decreased the mRNA levels of ribosomal p70 S6 kinase in the liver and longissimus dorsi of the piglets.