Frontiers in Neuroscience (Dec 2016)

A bidirectional brain-machine interface featuring a neuromorphic hardware decoder

  • Fabio Boi,
  • Timoleon Moraitis,
  • Vito De Feo,
  • Francesco Diotalevi,
  • Chiara Bartolozzi,
  • Giacomo Indiveri,
  • Alessandro Vato

DOI
https://doi.org/10.3389/fnins.2016.00563
Journal volume & issue
Vol. 10

Abstract

Read online

Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link4 between the brain and the external world. A decoder translates recorded neural activity into motor5 commands and an encoder delivers sensory information collected from the environment directly6 to the brain creating a closed-loop system. These two modules are typically integrated in bulky7 external devices. However, the clinical support of patients with severe motor and sensory deficits8 requires compact, low-power, and fully implantable systems that can decode neural signals to9 control external devices. As a first step toward this goal, we developed a modular bidirectional BMI10 setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented11 a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits.12 On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn13 to decode neural signals recorded from the brain into motor outputs controlling the movements14 of an external device. The modularity of the BMI allowed us to tune the individual components15 of the setup without modifying the whole system. In this paper we present the features of16 this modular BMI, and describe how we configured the network of spiking neuron circuits to17 implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm18 that connects bidirectionally the brain of an anesthetized rat with an external object. We show that19 the chip learned the decoding task correctly, allowing the interfaced brain to control the object’s20 trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is21 mature enough for the development of BMI modules that are sufficiently low-power and compact,22 while being highly computationally powerful and adaptive.

Keywords