Scientific Reports (Oct 2021)

Increased release of serotonin from rat primary isolated adult cardiac myofibroblasts

  • Emiri Tarbit,
  • Indu Singh,
  • Jason Nigel Peart,
  • Svetlana Bivol,
  • Roselyn Barbara Rose’Meyer

DOI
https://doi.org/10.1038/s41598-021-99632-y
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Elevated blood serotonin levels have been observed in patients with heart failure and serotonin has a role in pathological cardiac function. The serotonin receptor system was examined in adult rat isolated cardiac fibroblast and myofibroblast cells. This is one of the first studies that has investigated serotonin receptors and other proteins involved in the serotonin receptor system in rat cardiac fibroblast and myofibroblast cells. Rat primary cardiac fibroblasts were isolated and transformed into myofibroblasts using 5 ng/ml TGF-β1. Transformation of cells to myofibroblasts was confirmed with the presence of α-smooth muscle actin using Western blot. Serotonin metabolism and receptor protein expression was assessed using Western blot techniques and serotonin levels measured using ELISA. The 5-HT1A, 5-HT2A and 5-HT2B receptors were found to be present in both rat cardiac fibroblasts and myofibroblast cells, however no significance in protein expression between the two cell types was found (P > 0.05). In this study a significant increase in the serotonin transporter (SERT), tryptophan hydroxylase 1 and extracellular serotonin levels was observed in rat cardiac myofibroblasts when compared to fibroblasts (P < 0.05). These results suggest that serotonin levels may rise in parallel with cardiac myofibroblast populations and contribute to the pathogenesis of heart failure via serotonin receptors.