Scientific Reports (Jul 2024)
Analysis of culture and RNA isolation methods for precision-cut liver slices from cirrhotic rats
Abstract
Abstract Precision-cut liver slices (PCLS) are increasingly used as a model to investigate anti-fibrotic therapies. However, many studies use PCLS from healthy animals treated with pro-fibrotic stimuli in culture, which reflects only the early stages of fibrosis. The effects of different culture conditions on PCLS from cirrhotic animals has not been well characterized and there is no consensus on optimal methods. In this study, we report a method for the collection and culture of cirrhotic PCLS and compare the effect of common culture conditions on viability, function, and gene expression. Additionally, we compared three methods of RNA isolation and identified a protocol with high yield and purity. We observed significantly increased albumin production when cultured with insulin-transferrin-selenium and dexamethasone, and when incubated on a rocking platform. Culturing with insulin-transferrin-selenium and dexamethasone maintained gene expression closer to the levels in fresh slices. However, despite stable viability and function up to 4 days, we found significant changes in expression of key genes by day 2. Interestingly, we also observed that cirrhotic PCLS maintain viability in culture longer than slices from healthy animals. Due to the influence of matrix stiffness on fibrosis and hepatocellular function, it is important to evaluate prospective anti-fibrotic therapies in a platform that preserves tissue biomechanics. PCLS from cirrhotic animals represent a promising tool for the development of treatments for chronic liver disease.