Entropy (May 2022)

Are Experts Well-Calibrated? An Equivalence-Based Hypothesis Test

  • Gayan Dharmarathne,
  • Anca M. Hanea,
  • Andrew Robinson

DOI
https://doi.org/10.3390/e24060757
Journal volume & issue
Vol. 24, no. 6
p. 757

Abstract

Read online

Estimates based on expert judgements of quantities of interest are commonly used to supplement or replace measurements when the latter are too expensive or impossible to obtain. Such estimates are commonly accompanied by information about the uncertainty of the estimate, such as a credible interval. To be considered well-calibrated, an expert’s credible intervals should cover the true (but unknown) values a certain percentage of time, equal to the percentage specified by the expert. To assess expert calibration, so-called calibration questions may be asked in an expert elicitation exercise; these are questions with known answers used to assess and compare experts’ performance. An approach that is commonly applied to assess experts’ performance by using these questions is to directly compare the stated percentage cover with the actual coverage. We show that this approach has statistical drawbacks when considered in a rigorous hypothesis testing framework. We generalize the test to an equivalence testing framework and discuss the properties of this new proposal. We show that comparisons made on even a modest number of calibration questions have poor power, which suggests that the formal testing of the calibration of experts in an experimental setting may be prohibitively expensive. We contextualise the theoretical findings with a couple of applications and discuss the implications of our findings.

Keywords