Agronomy (Dec 2022)
Prospects for Increasing the Efficacy of Plant Resistance Inducers Stimulating Salicylic Acid
Abstract
Systemic acquired resistance is a powerful mechanism, based on the salicylic acid (SA) signaling pathway, which allows plants to resist to a wide range of pathogens. High SA, moreover, plays a key role in plant tolerance to abiotic stress. It seems, therefore, desirable to supply analogs of SA or stimulate the production of endogenous SA. Unfortunately, the chemical substances or physical means used for this effect often display a variable efficacy. After providing a review of them, we defend three major ideas: (i) plant resistance inducers (PRIs) must be combined for higher efficacy, notably for exploiting synergic effects between the SA and other signaling pathways, (ii) disease pressure can be reduced by exploiting the fungicidal properties displayed by some PRIs, (iii) biostimulants and crop management techniques should be used to ensure that plants have the resources they need to synthesize the compounds and structures required for efficient and lasting resistance. Some PRIs could also be used for their biostimulant effects in stress conditions. It could be concluded that holistic approaches which jointly address the issues of defense and tolerance stimulation, disease pressure and resource availability in plants are the ones that will allow for substantial reduction in fungicide use without sacrificing crop performance.
Keywords