Journal of Engineering Science and Technology (Apr 2013)
LABORATORY SIMULATION OF POROUS ASPHALT PARKING LOT SYSTEM AND MIX DESIGN FOR STORM WATER MANAGEMENT
Abstract
Porous asphalt pavement was initially developed for the purpose of improving road safety, best candidate material for quiet pavement and to avoid aquaplaning and skidding in wet weather. However, from previous studies, porous asphalt is able to mitigate surface runoff. Porous asphalt parking lots with underlying reservoir course perform as additional temporary water storage matrix that enables reduction of flash flood. This paper elaborates the development of a new porous asphalt aggregate grading design for storm water mitigation using the Nominal Maximum Aggregate Size (NMAS) 20 mm. The properties of the mixes were quantified and evaluated in terms of air voids, permeability, abrasion loss and indirect tensile strength. It was found that the proposed gradation has the best permeability and Indirect Tensile Strength (ITS) values when compacted at 50 blows per face with a standard Marshal compactor. The porous asphalt slab was prepared using a slab compactor to simulate porous parking lot paving at site. The porous asphalt slab was finally placed inside a locally fabricated water flow simulator to simulate a porous asphalt pavement system for parking lots.