Poultry Science (Mar 2021)
Serotonin modulates Campylobacter jejuni physiology and in vitro interaction with the gut epithelium
Abstract
Microbial endocrinology, which is the study of neurochemical-based host–microbe interaction, has demonstrated that neurochemicals affect bacterial pathogenicity. A variety of neurochemicals, including norepinephrine, were shown to enhance intestinal epithelial colonization by Campylobacter jejuni. Yet, little is known whether serotonin, an abundant neurochemical produced in the gut, affects the physiology of C. jejuni and its interaction with the host gut epithelium. Considering the avian gut produces serotonin and serves as a major reservoir of C. jejuni, we sought to investigate whether serotonin can affect C. jejuni physiology and gut epithelial colonization in vitro. We first determined the biogeographical distribution of serotonin concentrations in the serosa, mucosa, as well as the luminal contents of the broiler chicken ileum, cecum, and colon. Serotonin concentrations were greater (P 0.05) or motility (P > 0.05) of C. jejuni. Next, we utilized liquid chromatography tandem mass spectrometry to investigate whether serotonin affected the proteome of C. jejuni. Serotonin caused (P 0.05). Together, we have identified a potential role for serotonin in modulating C. jejuni colonization in the gut in vitro. Further studies are required to understand the practical implications of these findings for the control of C. jejuni enteric colonization in vivo.