Plants (Oct 2021)
The Effect of Low Irradiance on Leaf Nitrogen Allocation and Mesophyll Conductance to CO<sub>2</sub> in Seedlings of Four Tree Species in Subtropical China
Abstract
Low light intensity can lead to a decrease in photosynthetic capacity. However, could N-fixing species with higher leaf N contents mitigate the effects of low light? Here, we exposed seedlings of Dalbergia odorifera and Erythrophleum fordii (N-fixing trees), and Castanopsis hystrix and Betula alnoides (non-N-fixing trees) to three irradiance treatments (100%, 40%, and 10% sunlight) to investigate the effects of low irradiance on leaf structure, leaf N allocation strategy, and photosynthetic physiological parameters in the seedlings. Low irradiance decreased the leaf mass per unit area, leaf N content per unit area (Narea), maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), light compensation point, and light saturation point, and increased the N allocation proportion of light-harvesting components in all species. The studied tree seedlings changed their leaf structures, leaf N allocation strategy, and photosynthetic physiological parameters to adapt to low-light environments. N-fixing plants had a higher photosynthesis rate, Narea, Vcmax, and Jmax than non-N-fixing species under low irradiance and had a greater advantage in maintaining their photosynthetic rate under low-radiation conditions, such as under an understory canopy, in a forest gap, or when mixed with other species.
Keywords