Air Pollution Detection Using a Novel Snap-Shot Hyperspectral Imaging Technique
Arvind Mukundan,
Chia-Cheng Huang,
Ting-Chun Men,
Fen-Chi Lin,
Hsiang-Chen Wang
Affiliations
Arvind Mukundan
Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi City 62102, Taiwan
Chia-Cheng Huang
Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi City 62102, Taiwan
Ting-Chun Men
Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi City 62102, Taiwan
Fen-Chi Lin
Ophthalmology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Lingya District, Kaohsiung City 80284, Taiwan
Hsiang-Chen Wang
Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi City 62102, Taiwan
Air pollution has emerged as a global problem in recent years. Particularly, particulate matter (PM2.5) with a diameter of less than 2.5 μm can move through the air and transfer dangerous compounds to the lungs through human breathing, thereby creating major health issues. This research proposes a large-scale, low-cost solution for detecting air pollution by combining hyperspectral imaging (HSI) technology and deep learning techniques. By modeling the visible-light HSI technology of the aerial camera, the image acquired by the drone camera is endowed with hyperspectral information. Two methods are used for the classification of the images. That is, 3D Convolutional Neural Network Auto Encoder and principal components analysis (PCA) are paired with VGG-16 (Visual Geometry Group) to find the optical properties of air pollution. The images are classified into good, moderate, and severe based on the concentration of PM2.5 particles in the images. The results suggest that the PCA + VGG-16 has the highest average classification accuracy of 85.93%.