Agriculture (Nov 2022)
Channel–Spatial Segmentation Network for Classifying Leaf Diseases
Abstract
Agriculture is an important resource for the global economy, while plant disease causes devastating yield loss. To control plant disease, every country around the world spends trillions of dollars on disease management. Some of the recent solutions are based on the utilization of computer vision techniques in plant science which helps to monitor crop industries such as tomato, maize, grape, citrus, potato and cassava, and other crops. The attention-based CNN network has become effective in plant disease prediction. However, existing approaches are less precise in detecting minute-scale disease in the leaves. Our proposed Channel–Spatial segmentation network will help to determine the disease in the leaf, and it consists of two main stages: (a) channel attention discriminates diseased and healthy parts as well as channel-focused features, and (b) spatial attention consumes channel-focused features and highlights the diseased part for the final prediction process. This investigation forms a channel and spatial attention in a sequential way to identify diseased and healthy leaves. Finally, identified leaf diseases are divided into Mild, Medium, Severe, and Healthy. Our model successfully predicts the diseased leaves with the highest accuracy of 99.76%. Our research study shows evaluation metrics, comparison studies, and expert analysis to comprehend the network performance. This concludes that the Channel–Spatial segmentation network can be used effectively to diagnose different disease degrees based on a combination of image processing and statistical calculation.
Keywords