Antioxidants (Jul 2023)

Investigating the Interplay between Tomato Leaf Curl New Delhi Virus Infection, Starch Metabolism and Antioxidant Defence System in Potato (<i>Solanum tuberosum</i> L.)

  • Ravinder Kumar,
  • Milan Kumar Lal,
  • Rahul Kumar Tiwari,
  • Kumar Nishant Chourasia,
  • Awadhesh Kumar,
  • Rakesh Kumar,
  • Shivangi Sharma,
  • Brajesh Singh

DOI
https://doi.org/10.3390/antiox12071447
Journal volume & issue
Vol. 12, no. 7
p. 1447

Abstract

Read online

The potato apical leaf curl disease is caused by tomato leaf curl New Delhi virus-potato (ToLCNDV-potato), which severely alters a plant’s starch metabolism, starch hydrolysing enzymes, and antioxidant mechanism. In this study, the result suggested that ToLCNDV-potato significantly (p p < 0.01) enhancement in the leakage of plant oxidative metabolites such as proline and malondialdehyde (MDA) which was further confirmed with higher electrolyte leakage. The viral infection imbalance of starch metabolism in the leaves ultimately affects the carbohydrate profile. ToLCNDV-potato significantly lowered starch synthesis, enhanced the accumulation of sucrose, glucose, fructose and—which was further validated by enzymatic estimation of β-amylase—α-amylase and phosphorylase activity in the leaves of both cultivars. The antioxidant enzymes, viz., catalase, ascorbate peroxidase, and superoxide dismutase, were reported to be enhanced in both the cultivars due to ToLCNDV-potato infection. The higher enhancement of antioxidant enzyme activity was observed in Kufri Bahar, which signifies its resistant attributes. These findings in the potato plant broaden our understanding of the regulatory mechanisms of starch metabolism and antioxidant activity and provide proof of concept for breeding potato for ToLCNDV-potato tolerance.

Keywords