European Journal of Medical Research (Oct 2023)

FLAIR vascular hyperintensity combined with asymmetrical prominent veins in acute anterior circulation ischemic stroke: prediction of collateral circulation and clinical outcome

  • Wei Xiang,
  • Hongchun Wei,
  • Zhigang Liang,
  • Manman Zhang,
  • Zhongwen Sun,
  • Yaodong Lv,
  • Chengzhou Zhang,
  • Huaguang Zheng

DOI
https://doi.org/10.1186/s40001-023-01445-4
Journal volume & issue
Vol. 28, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background To investigate the value of fluid-attenuated inversion recovery vascular hyperintensity (FVH) within asymmetrical prominent veins sign (APVS) on susceptibility-weighted imaging predicting collateral circulation and prognosis in patients with acute anterior circulation ischemic stroke. Method Patients with severe stenosis or occlusion of ICA or MCA M1, who underwent MRI within 72 h from stroke onset were reviewed. The Alberta Stroke Program Early CT Score was used to evaluate the volume of infarction on DWI, the degree of FVH and APVS. Spearman correlation analysis was used to evaluate the correlation between FVH and APVS. All patients were divided into the good prognosis group and the poor prognosis group according to the score of the modified ranking scale (mRS) 90 days after the stroke. Logistic regression analysis was used to explore the relationship between FVH and APVS and functional prognosis, while receiver operating characteristic (ROC) curves were plotted to assess the value of FVH and APVS in predicting prognosis. Results Spearman correlation analysis revealed moderate positive correlations between FVH and APVS (r = 0.586, P < 0.001). The poor prognosis group had a higher rate of a history of atrial fibrillation, a larger cerebral infarction volume, a higher NIHSS score at admission, and a higher FVH and APVS score compared with the good prognosis group (all P < 0.05). A further logistic regression indicated that the NIHSS score, cerebral infarction volume, FVH and APVS were independent risk factors for a poor functional prognosis. In terms of FVH, APVS, alone and their combination for the diagnosis of poor prognosis, the sensitivity, specificity, area under the ROC curve (AUC), and 95% confidence interval (CI) were 86.8%, 83.3%, 0.899 (95% CI 0.830–0.968); 60.5%, 93.7%, 0.818 (95% CI 0.723–0.912); 86.8%, 89.6%, 0.921 (95% CI 0.860–0.981), respectively. Conclusion The presence of FVH and APVS can provide a comprehensive assessment of collateral circulation from the perspective of veins and arteries, and the correlation between the two is positively correlated. Both of them were independent risk factors for poor prognosis, their combination is complementary and can improve the predictive value.

Keywords