Advances in Civil Engineering (Jan 2019)
The Effect of Concrete Footing Shape in Differential Settlement: A Seismic Design
Abstract
This paper presents the numerical results of concrete footing-soil foundation seismic interaction mechanism. The concrete footing has been made with two different shapes, but with the equal volume of concrete material. The concrete footing-soil foundation has been analyzed using nonlinear finite elements, with the fixed-base state. The simulated near-fault ground motions have been applied to the concrete footing-soil foundation. The problem has been formulated based on the settlement controlled analysis. The local geotechnical conditions of all configurations have been analyzed. The numerical analysis results indicate that the shape of a concrete footing alters seismic response, revises inertial interaction, enhances damping ratio, improves load carry capacity, modifies cyclic differential settlement, revises failure patterns, minimizes nonlinear deformation, and changes cyclic strain energy dissipation. The novelty of this research work is the strain energy has more been dissipated with artistic concrete footing design.