Energies (Nov 2022)
Numerical Simulation and Experimental Validation of Thermal Break Strips’ Improvement in Facade LSF Walls
Abstract
Thermal bridges may have a significant prejudicial impact on the thermal behavior and energy efficiency of buildings. Given the high thermal conductivity of steel, in Lightweight Steel Framed (LSF) buildings, this detrimental effect could be even greater. The use of thermal break (TB) strips is one of the most broadly implemented thermal bridge mitigation technics. In a previous study, the performance of TB strips in partition LSF walls was evaluated. However, a search of the literature found no similar experimental campaigns for facade LSF walls, which are even more relevant for a building’s overall energy efficiency since they are in direct contact with the external environmental conditions. In this article the thermal performance of ten facade LSF wall configurations were measured, using the heat flow meter (HFM) method. These measurements were compared to numerical simulation predictions, exhibiting excellent similarity and, consequently, high reliability. One reference wall, three TB strip locations in the steel stud flanges and three TB strip materials were assessed. The outer and inner TB strips showed quite similar thermal performances, but with slightly higher thermal resistance for outer TB strips (around +1%). Furthermore, the TB strips were clearly less efficient in facade LSF walls when compared to their thermal performance improvement in load-bearing partition LSF walls.
Keywords