Frontiers in Physics (Apr 2024)

A resource-efficient quantum convolutional neural network

  • Yanqi Song,
  • Jing Li,
  • Yusen Wu,
  • Sujuan Qin,
  • Qiaoyan Wen,
  • Fei Gao

DOI
https://doi.org/10.3389/fphy.2024.1362690
Journal volume & issue
Vol. 12

Abstract

Read online

Quantum Convolutional Neural Network (QCNN) has achieved significant success in solving various complex problems, such as quantum many-body physics and image recognition. In comparison to the classical Convolutional Neural Network (CNN) model, the QCNN model requires excellent numerical performance or efficient computational resources to showcase its potential quantum advantages, particularly in classical data processing tasks. In this paper, we propose a computationally resource-efficient QCNN model referred to as RE-QCNN. Specifically, through a comprehensive analysis of the complexity associated with the forward and backward propagation processes in the quantum convolutional layer, our results demonstrate a significant reduction in computational resources required for this layer compared to the classical CNN model. Furthermore, our model is numerically benchmarked on recognizing images from the MNIST and Fashion-MNIST datasets, achieving high accuracy in these multi-class classification tasks.

Keywords