Cell Death Discovery (Apr 2023)

High glucose-induced STING activation inhibits diabetic wound healing through promoting M1 polarization of macrophages

  • Kang Geng,
  • Xiumei Ma,
  • Zongzhe Jiang,
  • Wei Huang,
  • Junling Gu,
  • Peng Wang,
  • Lifang Luo,
  • Youhua Xu,
  • Yong Xu

DOI
https://doi.org/10.1038/s41420-023-01425-x
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Diabetic wound (DW) is characterized by elevated pro-inflammatory cytokines and cellular dysfunction consistent with elevated reactive oxygen species (ROS) levels. Recent advances in immunology have dissected molecular pathways involved in the innate immune system where cytoplasmic DNA can trigger STING-dependent inflammatory responses and play an important role in metabolic-related diseases. We investigated whether STING regulates inflammation and cellular dysfunction in DW healing. We found that STING and M1 macrophages were increased in wound tissues from DW in patients and mice and delayed the wound closure. We also noticed that the massively released ROS in the High glucose (HG) environment activated STING signaling by inducing the escape of mtDNA to the cytoplasm, inducing macrophage polarization into a pro-inflammatory phenotype, releasing pro-inflammatory cytokines, and exacerbating endothelial cell dysfunction. In Conclusion, mtDNA-cGAS-STING pathway activation under diabetic metabolic stress is an important mechanism of DW refractory healing. While using STING gene-edited macrophages for wound treatment by cell therapy can induce the polarization of wound macrophages from pro-inflammatory M1 to anti-inflammatory M2, promote angiogenesis, and collagen deposition to accelerate DW healing. STING may be a promising therapeutic target for DW.