Epidemics (Dec 2022)

Why does age at HIV infection correlate with set point viral load? An evolutionary hypothesis

  • Steven M. Goodreau,
  • Sarah E. Stansfield,
  • John E. Mittler,
  • James T. Murphy,
  • Neil F. Abernethy,
  • Geoffrey S. Gottlieb,
  • Molly C. Reid,
  • Juandalyn C. Burke,
  • Emily D. Pollock,
  • Joshua T. Herbeck

Journal volume & issue
Vol. 41
p. 100629

Abstract

Read online

Background: Set-point viral load (SPVL) correlates with the age at which people acquire HIV. Although immunosenescence may seem like a parsimonious explanation for this, it does not easily explain the observation that the relationship between age and SPVL attenuates when accounting for source partner SPVL. Here we propose an alternative explanation that encompasses this latter finding: that decreasing risk of acquisition with older age generates a selection bottleneck that selects for more virulent strains with age. Methods: We adapted a previously published model of HIV transmission and evolution (EvoNetHIV), parameterized here for men who have sex with men (MSM). We conducted a series of simulation experiments that vary seven behavioral or clinical parameters that affect exposure risk as people age. We conducted regressions to determine the mean increase in SPVL per 10-year increase in seroconversion age, with and without source SPVL in the model. Results: All runs generated significant relationships between seroconversion age and SPVL when not including source SPVL. All saw attenuated relationships, most to near 0, with source SPVL included. Four of our behavioral measures (relational duration, age-related homophily, coital frequency, and mean age at relationship formation) had clear effects on this relationship, all in the hypothesized direction. Combining multiple forms of behavioral heterogeneity yielded an increase of 0.056 log10 copies/mL SPVL per 10-year increase in seroconversion age, nearly as large as that seen in two empirical studies of age-SPVL correlations in MSM. Conclusion: The higher virulence of HIV among those infected later in life may be partly explained by a combination of selective bottlenecks and behavioral heterogeneity by age. Variation in the strength of this effect across populations may be in part due to different behavioral, epidemiological and clinical conditions, and not require assumptions about differences in patterns of immunosenescence among populations.

Keywords