Demonstratio Mathematica (May 2023)

On local fractional integral inequalities via generalized (h˜1,h˜2)\left({\tilde{h}}_{1},{\tilde{h}}_{2})-preinvexity involving local fractional integral operators with Mittag-Leffler kernel

  • Vivas-Cortez Miguel,
  • Bibi Maria,
  • Muddassar Muhammad,
  • Al-Sa’di Sa’ud

DOI
https://doi.org/10.1515/dema-2022-0216
Journal volume & issue
Vol. 56, no. 1
pp. 171 – 216

Abstract

Read online

Local fractional integral inequalities of Hermite-Hadamard type involving local fractional integral operators with Mittag-Leffler kernel have been previously studied for generalized convexities and preinvexities. In this article, we analyze Hermite-Hadamard-type local fractional integral inequalities via generalized (h˜1,h˜2)\left({\tilde{h}}_{1},{\tilde{h}}_{2})-preinvex function comprising local fractional integral operators and Mittag-Leffler kernel. In addition, two examples are discussed to ensure that the derived consequences are correct. As an application, we construct an inequality to establish central moments of a random variable.

Keywords