Processing and Application of Ceramics (Mar 2015)

Structural, electrical and magnetic behaviour of undoped and nickel doped nanocrystalline bismuth ferrite by solution combustion route

  • Kakali Sarkar,
  • Soumya Mukherjee,
  • Siddhartha Mukherjee

DOI
https://doi.org/10.2298/PAC1501053S
Journal volume & issue
Vol. 9, no. 1
pp. 53 – 60

Abstract

Read online

Multiferroic bismuth ferrite (BFO) and Ni-doped bismuth ferrites, with perovskite structure, were synthesized by chemical route at the temperatures ranging from 500 to 600 °C in controlled atmosphere. The structural phase analysis of materials was identified by XRD and crystallite size was calculated from the half width measurement of the well defined major XRD diffraction peak. Average crystallite size was calculated by applying Scherrer’s formula and found to have values in the range from 14 to 35 nm. FESEM was used to evaluate the morphology and structural formation of nanocrystallite grains, while EDX confirmed elemental composition including the presence of dopant in the matrix. Dielectric properties and effect of electric field on polarization behaviour were studied for both undoped and Ni-doped BFO. Doping shows a clear change in ferroelectric behaviour. Antiferromagnetic nature of bulk bismuth ferrite transforms to superparamagnetic strong ferroelectric nature for both undoped and nickel doped nanocrystalline bismuth ferrite due to its close dimension of crystallite size with magnetic domains leading to break-down of frustrated spin cycloidal moment. The superparamagnetism behaviour is more pronounced for the nickel doped BFO though magnetic saturation is slightly higher for the undoped nanocrystalline bismuth ferrite.

Keywords