Cell Death Discovery (Jul 2024)
The recruitment of CD8+ T cells through YBX1 stabilization abrogates tumor intrinsic oncogenic role of MIR155HG in lung adenocarcinoma
Abstract
Abstract Previous studies revealed that MIR155HG possessed an oncogenic role in many types of tumors including lung adenocarcinoma (LUAD), along with higher expression in tumors. However, in our study, we observed a positive correlation between MIR155HG expression and overall survival across different cohorts. The transferred PBMC on the NCG mouse model abrogated the tumor intrinsic oncogenic role of MIR155HG in LUAD. Upregulation of MIR155HG positively correlated with CD8+ T cell infiltration both in vitro and in vivo, as well as LUAD tissues. Mechanistically, we revealed that MIR155HG increased the cytokine CCL5 expression at the transcriptional level, which depended on the interaction between MIR155HG and YBX1 protein, a novel transcription factor of CCL5, resulting in the more protein stability of YBX1 through dampening ubiquitination. Additionally, we also observed that MIR155 could increase PD-L1 expression to hamper the activity of recruited CD8+ T cells, which could be rescued through PD-L1 mAb addition. Finally, we uncovered that patients with high MIR155HG expression had a higher response rate to immunotherapy, and the combination of MIR155HG overexpression and PD-L1 mAb increased the efficacy of PD-L1 mAb. Together, our study provides a novel biomarker and potential combination treatment strategy for patients who received immunotherapy.