Remote Sensing (Jul 2023)

Regional Climate Effects of Irrigation under Central Asia Warming by 2.0 °C

  • Liyang Wu,
  • Hui Zheng

DOI
https://doi.org/10.3390/rs15143672
Journal volume & issue
Vol. 15, no. 14
p. 3672

Abstract

Read online

There has been a severe shortage of water resources in Central Asia and agriculture has been highly dependent on irrigation because of the scarce precipitation in the croplands. Central Asia is also experiencing climate warming in the context of global warming; however, few studies have focused on changes in the amount of irrigation in Central Asia under future climate warming and their regional climate effects. In this study, we adopted the Weather Research and Forecasting (WRF) model to design three types of experiments: historical experiments (Exp01); warming experiments using future driving fields (Exp02); and warming experiments that involved increasing the surface energy (Exp03). In each type of experiment, two experiments (considering and not considering irrigation) were carried out. We analyzed the regional climate effects of irrigation under the warming of Central Asia by 2.0 °C through determining the differences between the two types of warming experiments and the historical experiments. For surface variables (irrigation amount; sensible heat flux; latent heat flux; and surface air temperature), the changes (relative to Exp01) in Exp03 were thought to be reasonable. For precipitation, the changes (relative to Exp01) in Exp02 were thought to be reasonable. The main conclusions were as follows: in Central Asia, after warming by 2.0 °C, the irrigation amount increased by 10–20%; in the irrigated croplands of Central Asia, the irrigation-caused increases (decreases) in latent heat flux (sensible heat flux) further expanded; and then the irrigation-caused decreases in surface air temperature also became enhanced; during the irrigation period, the irrigation-caused increases in precipitation in the mid-latitude mountainous areas were reduced. This study also showed that, in the WRF model, the warming experiments caused by driving fields were not suitable to simulate the changes in irrigation amount affected by climate warming.

Keywords