Grasses (Dec 2024)

Impact of Salt and Alkali Stress on Forage Biomass Yield, Nutritive Value, and Animal Growth Performance: A Comprehensive Review

  • Hunegnaw Abebe,
  • Yan Tu

DOI
https://doi.org/10.3390/grasses3040026
Journal volume & issue
Vol. 3, no. 4
pp. 355 – 368

Abstract

Read online

This review investigates the impact of saline and alkaline soils on forage biomass yield, nutritive value, and their subsequent effects on animal growth performance, which are critical for sustainable livestock production. Soil salinity and alkalinity, driven by environmental factors and human activities, significantly affect forage yield and quality, with notable consequences for ruminant nutrition. While some forage species exhibit enhanced crude protein (CP) content and improved leaf-to-stem ratios under salt stress, others suffer from reduced growth and biomass yield. Saline-affected forages are often characterized by lower acid detergent fiber (ADF) and neutral detergent fiber (NDF) levels, enhancing their digestibility and making them a potentially valuable feed resource. However, high salinity levels pose significant challenges to consistent forage production in arid and semi-arid regions. Cultivating salt-tolerant forage species has emerged as a promising solution, offering a sustainable approach to addressing the dual challenges of soil salinity and livestock feed shortages. This review emphasizes the need for further research on salinity tolerance mechanisms and the development of resilient forage varieties. By integrating salt-tolerant forages and adopting effective management practices, livestock producers can ensure a reliable and high-quality feed supply while enhancing the growth performance of ruminant animals in salt-affected areas.

Keywords