Remote Sensing (Dec 2017)

Ice Velocity Variations of the Polar Record Glacier (East Antarctica) Using a Rotation-Invariant Feature-Tracking Approach

  • Tingting Liu,
  • Muye Niu,
  • Yuande Yang

DOI
https://doi.org/10.3390/rs10010042
Journal volume & issue
Vol. 10, no. 1
p. 42

Abstract

Read online

In this study, the ice velocity changes from 2004 to 2015 of the Polar Record Glacier (PRG) in East Antarctica were investigated based on a feature-tracking method using Landsat-7 enhanced thematic mapper plus (ETM+) and Landsat-8 operational land imager (OLI) images. The flow field of the PRG curves make it difficult to generate ice velocities in some areas using the traditional normalized cross-correlation (NCC)-based feature-tracking method. Therefore, a rotation-invariant parameter from scale-invariant feature transform (SIFT) is introduced to build a novel rotation-invariant feature-tracking approach. The validation was performed based on multi-source images and the making earth system data records for use in research environments (MEaSUREs) interferometric synthetic aperture radar (InSAR)-based Antarctica ice velocity map data set. The results indicate that the proposed method is able to measure the ice velocity in more areas and performs as well as the traditional NCC-based feature-tracking method. The sequential ice velocities obtained present the variations in the PRG during this period. Although the maximum ice velocity of the frontal margin of the PRG and the frontal iceberg reached about 900 m/a and 1000 m/a, respectively, the trend from 2004 to 2015 showed no significant change. Under the interaction of the Polar Times Glacier and the Polarforschung Glacier, both the direction and the displacement of the PRG were influenced. This impact also led to higher velocities in the western areas of the PRG than in the eastern areas. In addition, elevation changes and frontal iceberg calving also impacted the ice velocity of the PRG.

Keywords