Transgenic Rice Plants Expressing Artificial miRNA Targeting the Rice Stripe Virus <i>MP</i> Gene Are Highly Resistant to the Virus
Liya Zhou,
Quan Yuan,
Xuhong Ai,
Jianping Chen,
Yuwen Lu,
Fei Yan
Affiliations
Liya Zhou
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
Quan Yuan
College of Plant Protection, Northwest A & F University, Yangling 712100, China
Xuhong Ai
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
Jianping Chen
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
Yuwen Lu
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
Fei Yan
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
Rice stripe virus (RSV) causes one of the most serious viral diseases of rice. RNA interference is one of the most efficient ways to control viral disease. In this study, we constructed an amiRNA targeting the RSV MP gene (amiR MP) based on the backbone sequence of the osa-MIR528 precursor, and obtained marker-free transgenic rice plants constitutively expressing amiR MP by Agrobacterium tumefaciens-mediated transformation. A transient expression assay demonstrated that dimeric amiR MP could be effectively recognized and cleaved at the target MP gene in plants. Northern blot of miRNA indicated that amiR MP-mediated viral resistance could be stably inherited. The transgenic rice plants were highly resistant to RSV (73–90%). Our research provides novel rice germplasm for RSV control.