Applied Sciences (Jun 2025)
Fuzzy MCDM Methodology for Analysis of Fibre Laser Cutting Process
Abstract
Considering the complexity of laser cutting technology, and difficulties and limitations when applying traditional multi-criteria decision-making (MCDM) methods, this study proposes a fuzzy MCDM methodology for the analysis of the fibre laser cutting process, assessment of alternative cutting conditions and selection of favourable cutting conditions. The experiment in fibre laser cutting of mild steel was based on a Box–Behnken design by considering three input parameters (focus position, cutting speed and oxygen pressure) and four relevant criteria for the assessment of cutting conditions (kerf width on a straight and curved cut, surface roughness and surface productivity). The proposed fuzzy MCDM methodology makes use of expert knowledge and experimental data for criteria evaluation and decision matrix development, respectively, while three fuzzy MCDM methods (fuzzy TOPSIS, fuzzy WASPAS and fuzzy ARAS) were used to determine the complete ranking of alternatives. Kendall’s tau-b and Spearman’s rho correlation tests were applied to compare the obtained ranking lists, while the stability of the ranking was assessed with the application of the Monte Carlo simulation. Finally, to approximate the fuzzy decision-making rule, a second-order model was developed to reveal the significance of process parameters and identify favourable laser cutting conditions.
Keywords