Molecular Oncology (Sep 2020)

Long noncoding RNA SNHG12 induces proliferation, migration, epithelial–mesenchymal transition, and stemness of esophageal squamous cell carcinoma cells via post‐transcriptional regulation of BMI1 and CTNNB1

  • Duoguang Wu,
  • Xiaotian He,
  • Wenjian Wang,
  • Xueting Hu,
  • Kefeng Wang,
  • Minghui Wang

DOI
https://doi.org/10.1002/1878-0261.12683
Journal volume & issue
Vol. 14, no. 9
pp. 2332 – 2351

Abstract

Read online

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors around the world. Numerous studies have revealed the function of long noncoding RNAs (lncRNAs) in cancers, including ESCC. In this study, lncRNA small nucleolar RNA host gene 12 (SNHG12), mainly distributed in ESCC cell cytoplasm, was overexpressed in ESCC specimens and CD133+ cells. In CD133‐ ESCC cells, SNHG12 overexpression promoted cell proliferation, migration, epithelial–mesenchymal transition (EMT), and stemness and SNHG12 silencing led to opposite results. Furthermore, SNHG12 sequestered miR‐6835‐3p and induced the proto‐oncogene, polycomb ring finger (BMI1). SNHG12 also enhanced the stability of CTNNB1, the mRNA encoding β‐catenin, via recruiting insulin‐like growth factor 2 mRNA‐binding protein 2 (IGF2BP2) in ESCC. Rescue assays indicated that CTNNB1 and BMI1 were targets for SNHG12 to regulate ESCC cell proliferation, migration, EMT, and stemness. Furthermore, SOX4 (sex‐determining region Y‐box 4) bound with the SNHG12 promoter to transcriptionally activate SNHG12 in ESCC. Finally, in vivo data showed SNHG12 knockdown retarded tumorigenesis and metastasis in ESCC. In summary, SNHG12 induces proliferation, migration, EMT, and stemness of ESCC cells via post‐transcriptional regulation of BMI1 and CTNNB1, indicating that targeting SNHG12 might be a novel target for ESCC treatment.

Keywords