Layer‐controlled nonlinear terahertz valleytronics in two‐dimensional semimetal and semiconductor PtSe2
Minoosh Hemmat,
Sabrine Ayari,
Martin Mičica,
Hadrien Vergnet,
Shasha Guo,
Mehdi Arfaoui,
Xuechao Yu,
Daniel Vala,
Adrien Wright,
Kamil Postava,
Juliette Mangeney,
Francesca Carosella,
Sihem Jaziri,
Qi Jie Wang,
Zheng Liu,
Jérôme Tignon,
Robson Ferreira,
Emmanuel Baudin,
Sukhdeep Dhillon
Affiliations
Minoosh Hemmat
Laboratoire de Physique de l'Ecole normale supérieure, ENS Université PSL, CNRS, Sorbonne Université, Université de Paris‐Cité Paris France
Sabrine Ayari
Laboratoire de Physique de l'Ecole normale supérieure, ENS Université PSL, CNRS, Sorbonne Université, Université de Paris‐Cité Paris France
Martin Mičica
Laboratoire de Physique de l'Ecole normale supérieure, ENS Université PSL, CNRS, Sorbonne Université, Université de Paris‐Cité Paris France
Hadrien Vergnet
Laboratoire de Physique de l'Ecole normale supérieure, ENS Université PSL, CNRS, Sorbonne Université, Université de Paris‐Cité Paris France
Shasha Guo
School of Materials Science and Engineering Nanyang Technological University Singapore Singapore
Mehdi Arfaoui
Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences de Tunis Université Tunis El Manar, Campus Universitaire Tunis Tunisia
Xuechao Yu
Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences Suzhou Jiangsu the People's Republic of China
Daniel Vala
IT4Innovations, National Supercomputing Center VSB—Technical University of Ostrava Ostrava‐Poruba Czech Republic
Adrien Wright
Laboratoire de Physique de l'Ecole normale supérieure, ENS Université PSL, CNRS, Sorbonne Université, Université de Paris‐Cité Paris France
Kamil Postava
IT4Innovations, National Supercomputing Center VSB—Technical University of Ostrava Ostrava‐Poruba Czech Republic
Juliette Mangeney
Laboratoire de Physique de l'Ecole normale supérieure, ENS Université PSL, CNRS, Sorbonne Université, Université de Paris‐Cité Paris France
Francesca Carosella
Laboratoire de Physique de l'Ecole normale supérieure, ENS Université PSL, CNRS, Sorbonne Université, Université de Paris‐Cité Paris France
Sihem Jaziri
School of Materials Science and Engineering Nanyang Technological University Singapore Singapore
Qi Jie Wang
School of Electrical and Electronic Engineering & School of Physical and Mathematical Sciences The Photonics Institute, Nanyang Technological University Singapore Singapore
Zheng Liu
School of Materials Science and Engineering Nanyang Technological University Singapore Singapore
Jérôme Tignon
Laboratoire de Physique de l'Ecole normale supérieure, ENS Université PSL, CNRS, Sorbonne Université, Université de Paris‐Cité Paris France
Robson Ferreira
Laboratoire de Physique de l'Ecole normale supérieure, ENS Université PSL, CNRS, Sorbonne Université, Université de Paris‐Cité Paris France
Emmanuel Baudin
Laboratoire de Physique de l'Ecole normale supérieure, ENS Université PSL, CNRS, Sorbonne Université, Université de Paris‐Cité Paris France
Sukhdeep Dhillon
Laboratoire de Physique de l'Ecole normale supérieure, ENS Université PSL, CNRS, Sorbonne Université, Université de Paris‐Cité Paris France
Abstract Platinum diselenide (PtSe2) is a promising two‐dimensional (2D) material for the terahertz (THz) range as, unlike other transition metal dichalcogenides (TMDs), its bandgap can be uniquely tuned from a semiconductor in the near‐infrared to a semimetal with the number of atomic layers. This gives the material unique THz photonic properties that can be layer‐engineered. Here, we demonstrate that a controlled THz nonlinearity—tuned from monolayer to bulk PtSe2—can be realized in wafer size polycrystalline PtSe2 through the generation of ultrafast photocurrents and the engineering of the bandstructure valleys. This is combined with the PtSe2 layer interaction with the substrate for a broken material centrosymmetry, permitting a second order nonlinearity. Further, we show layer dependent circular dichroism, where the sign of the ultrafast currents and hence the phase of the emitted THz pulse can be controlled through the excitation of different bandstructure valleys. In particular, we show that a semimetal has a strong dichroism that is absent in the monolayer and few layer semiconducting limit. The microscopic origins of this TMD bandstructure engineering are highlighted through detailed DFT simulations, and shows the circular dichroism can be controlled when PtSe2 becomes a semimetal and when the K‐valleys can be excited. As well as showing that PtSe2 is a promising material for THz generation through layer controlled optical nonlinearities, this work opens up a new class of circular dichroism materials beyond the monolayer limit that has been the case of traditional TMDs, and impacting a range of domains from THz valleytronics, THz spintronics to harmonic generation.