E3S Web of Conferences (Jan 2020)
Integration of reliability-based topology optimization into biomechanics: Application on hollow stems used in cementless total hip arthroplasty
Abstract
The integration of topology optimization into biomechanical applications possesses an important key to increase the performance levels. In literature, two models can be found: Deterministic Topology Optimization (DTO) and Reliability-Based Topology Optimization (RBTO). The DTO leads to a single layout for a given design space. However, the RBTO generates several reliability-based topologies with high performance levels. Topology optimization has been already integrated into biomechanical applications such as prosthesis design. The filter-based approaches being tied to the element discretization, are previously used to control the resulting topologies or to prevent undesirable designs. These are expensive operations for fine meshes or complex domains and numerous numerical difficulties can be met. In this work, the RBTO is integrated at the conceptual design stage of the total hip replacement to control the resulting topologies to meet different constraints such as manufacturing constraints. This can provide several types of hollow stems considering the daily loading cases. Two alternative approaches based on the Optimum Safety Factors (OSF) are developed to provide two categories of solutions. The RBTO model can be integrated into the additive manufacturing technology as a topology generator satisfying several manufacturing constraints. The resulting different configurations can then be provided for various patients.