Microorganisms (Apr 2021)
<i>Bacillus velezensis</i> CE 100 Inhibits Root Rot Diseases (<i>Phytophthora</i> spp.) and Promotes Growth of Japanese Cypress (<i>Chamaecyparis obtusa</i> Endlicher) Seedlings
Abstract
Root rot diseases, caused by phytopathogenic oomycetes, Phytophthora spp. cause devastating losses involving forest seedlings, such as Japanese cypress (Chamaecyparis obtusa Endlicher) in Korea. Plant growth-promoting rhizobacteria (PGPR) are a promising strategy to control root rot diseases and promote growth in seedlings. In this study, the potential of Bacillus velezensis CE 100 in controlling Phytophthora root rot diseases and promoting the growth of C. obtusa seedlings was investigated. B. velezensis CE 100 produced β-1,3-glucanase and protease enzymes, which degrade the β-glucan and protein components of phytopathogenic oomycetes cell-wall, causing mycelial growth inhibition of P. boehmeriae, P. cinnamomi, P. drechsleri and P. erythoroseptica by 54.6%, 62.6%, 74.3%, and 73.7%, respectively. The inhibited phytopathogens showed abnormal growth characterized by swelling and deformation of hyphae. B. velezensis CE 100 increased the survival rate of C. obtusa seedlings 2.0-fold and 1.7-fold compared to control, and fertilizer treatment, respectively. Moreover, B. velezensis CE 100 produced indole-3-acetic acid (IAA) up to 183.7 mg/L, resulting in a significant increase in the growth of C. obtusa seedlings compared to control, or chemical fertilizer treatment, respectively. Therefore, this study demonstrates that B. velezensis CE 100 could simultaneously control Phytophthora root rot diseases and enhance growth of C. obtusa seedlings.
Keywords