Sensor-Level Wavelet Analysis Reveals EEG Biomarkers of Perceptual Decision-Making
Alexander Kuc,
Vadim V. Grubov,
Vladimir A. Maksimenko,
Natalia Shusharina,
Alexander N. Pisarchik,
Alexander E. Hramov
Affiliations
Alexander Kuc
Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya Str. 1, 420500 Innopolis, Russia
Vadim V. Grubov
Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya Str. 1, 420500 Innopolis, Russia
Vladimir A. Maksimenko
Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya Str. 1, 420500 Innopolis, Russia
Natalia Shusharina
School of Life Sciences, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
Alexander N. Pisarchik
Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya Str. 1, 420500 Innopolis, Russia
Alexander E. Hramov
Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya Str. 1, 420500 Innopolis, Russia
Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).