IEEE Transactions on Neural Systems and Rehabilitation Engineering (Jan 2023)
LSTM-MSA: A Novel Deep Learning Model With Dual-Stage Attention Mechanisms Forearm EMG-Based Hand Gesture Recognition
Abstract
This paper introduces the Long Short-Term Memory with Dual-Stage Attention (LSTM-MSA) model, an approach for analyzing electromyography (EMG) signals. EMG signals are crucial in applications like prosthetic control, rehabilitation, and human-computer interaction, but they come with inherent challenges such as non-stationarity and noise. The LSTM-MSA model addresses these challenges by combining LSTM layers with attention mechanisms to effectively capture relevant signal features and accurately predict intended actions. Notable features of this model include dual-stage attention, end-to-end feature extraction and classification integration, and personalized training. Extensive evaluations across diverse datasets consistently demonstrate the LSTM-MSA’s superiority in terms of F1 score, accuracy, recall, and precision. This research provides a model for real-world EMG signal applications, offering improved accuracy, robustness, and adaptability.
Keywords