Energies (May 2023)
Techno-Economic Analysis of Thermochemical Conversion of Waste Masks Generated in the EU during COVID-19 Pandemic into Energy Products
Abstract
During the COVID-19 pandemic, more than 24 billion pieces of surgical mask waste (WM) were generated in the EU region, with an acute shortage of their management and recycling. Pyrolysis and gasification are among the most promising treatments that were proposed to dispose of WMs and convert them into pyrolysis oil and hydrogen-rich syngas. This work aimed to investigate the techno-economic analysis (TEA) of both treatments in order to assess the feasibility of scaling up. The TEA was carried out using a discounted cash flow model and its data were collected from practical experiments conducted using a fluidised bed pyrolysis reactor and bubbling fluidised bed gasifier system with a capacity of 0.2 kg/h and 1 kg/h, respectively, then upscaling to one tonne/h. The technological evaluation was made based on the optimal conditions that could produce the maximum amount of pyrolysis oil (42.3%) and hydrogen-rich syngas (89.7%). These treatments were also compared to the incineration of WMs as a commercial solution. The discounted payback, simple payback, net present value (NPV), production cost, and internal rate of return (IRR) were the main indicators used in the economic feasibility analysis. Sensitivity analysis was performed using SimLab software with the help of Monte Carlo simulations. The results showed that the production cost of the main variables was estimated at 45.4 EUR/t (gate fee), 71.7 EUR/MWh (electricity), 30.5 EUR/MWh (heat), 356 EUR/t (oil), 221 EUR/t (gaseous), 237 EUR/t (char), and 257 EUR/t (syngas). Meanwhile, the IRR results showed that gasification (12.51%) and incineration (7.56%) have better economic performance, while pyrolysis can produce less revenue (1.73%). Based on the TEA results, it is highly recommended to use the gasification process to treat WMs, yielding higher revenue.
Keywords