Materials Research Express (Jan 2021)

Behavior of phase transition of ZnO in nanoscale of time a molecular dynamics computation

  • Y Chergui,
  • T Aouaroun,
  • M J Hadley,
  • R Chemam,
  • A Ouatizerga

DOI
https://doi.org/10.1088/2053-1591/abe565
Journal volume & issue
Vol. 8, no. 3
p. 035905

Abstract

Read online

The phase transition of Zinc Oxide Wurtzite structure is investigated at the Nanoscale of time and space using Equilibrium Parallel Molecular Dynamics simulation. We extend existing results to higher pressure and temperature. The calculations ran on the RAVEN supercomputer of Cardiff University with DL_POL_4 software. The interatomic interaction modeled by Bukingham-Coulpmb potential for short and long-range interactions. We study the evolution in time of the total energy in isothermal and isobaric ensemble, to find the equilibrium time of the system, under the ranges of pressure 0–200(GPa) and temperature 300–3000(K), This is a new method to investigate the phase transition. Our results are closed to available theoretical and experimental data.

Keywords