Mokslas: Lietuvos Ateitis (Jul 2015)

Network traffic anomalies identification based on classification methods / Tinklo srauto anomalijų identifikavimas, taikant klasifikavimo metodus

  • Donatas Račys,
  • Dalius Mažeika

DOI
https://doi.org/10.3846/mla.2015.796
Journal volume & issue
Vol. 7, no. 3

Abstract

Read online

A problem of network traffic anomalies detection in the computer networks is analyzed. Overview of anomalies detection methods is given then advantages and disadvantages of the different methods are analyzed. Model for the traffic anomalies detection was developed based on IBM SPSS Modeler and is used to analyze SNMP data of the router. Investigation of the traffic anomalies was done using three classification methods and different sets of the learning data. Based on the results of investigation it was determined that C5.1 decision tree method has the largest accuracy and performance and can be successfully used for identification of the network traffic anomalies. Santrauka Straipsnyje nagrinėjama kompiuterių tinklo srauto anomalijų atpažinimo problema. Apžvelgiami kompiuterių tinklų anomalijų aptikimo metodai bei aptariami jų privalumai ir trūkumai. Naudojant IBM SPSS Modeler programų paketą sudarytas nagrinėjamo tinklo srauto anomalijų atpažinimo modelis, pritaikytas SNMP protokolu pagrįstiems maršruto parinktuvo duomenims apdoroti. Pagal tris klasifikavimo metodus ir skirtingus mokymui skirtus duomenų rinkinius atlikti skaičiavimai tinklo anomalijoms identifikuoti. Palyginant gautus rezultatus nustatyta, kad C5.1 sprendimo medžio algoritmas yra tiksliausias ir sparčiausias, todėl ir tinkamiausias tinklo srauto anomalijoms atpažinti. Raktiniai žodžiai: anomalijų atpažinimas, klasifikavimo metodai, kompiuterių tinklai.

Keywords