AIMS Mathematics (Jul 2020)

<em>µ</em>-extended fuzzy <em>b</em>-metric spaces and related fixed point results

  • Badshah-e-Rome,
  • Muhammad Sarwar,
  • Thabet Abdeljawad

DOI
https://doi.org/10.3934/math.2020333
Journal volume & issue
Vol. 5, no. 5
pp. 5184 – 5192

Abstract

Read online

This paper introduces the notion of $\mu$-extended fuzzy $b$-metric space for extending the concept of fuzzy $b$-metric space and obtains an analogue of Banach fixed point result. Using functions $\alpha(x,y)$ and $\mu(x,y)$, the corresponding triangle inequality in $\mu$-extended fuzzy $b$-metric space is given as follows $$M( \upsilon,\omega,\alpha(\upsilon,\omega)s+\mu(\upsilon,\omega)t)\geq M(\upsilon,\nu,s)*M(\nu,\omega,t)\ \ \forall \upsilon,\nu,\omega \in X. $$ An analogue of Banach fixed point result is established. Besides, an example is given to confirm validity of this theorem.

Keywords