Materials Today Bio (Dec 2024)
Bioactive hydrogel synergizes neuroprotection, macrophage polarization, and angiogenesis to improve repair of traumatic brain injury
Abstract
Traumatic brain injury (TBI) can lead to severe neurotrauma, leading to long-term cognitive decline and even death. Massive neuronal loss and excessive neuroinflammation are critical issues in the treatment of secondary TBI. To tackle these challenges, we developed a GelMA and CSMA hydrogel loaded with Erythropoietin (EPO) and Interleukin-4 (IL-4), named GC/I/E. By directly loading the hydrogel with EPO, rapid neuroprotection and angiogenesis were achieved. Meanwhile, by loading Mesoporous silica nanoparticles (MSNs) with IL-4 (MSN@IL-4), sustained inflammation modulation during inflammation was attained. In vitro experiments demonstrated that GC/I/E hydrogel were biocompatible and could provide neuroprotection for HT22 cells in H2O2 environment, regulate RAW264.7 polarization from M1 to M2 phenotype and promote HUVEC angiogenesis. In vivo experiments demonstrated that GC/I/E hydrogel reduced brain edema and Nissl body damage, inhibited inflammatory expression of G3-FFAP and neural scarring, improved microvascular and vascular function reconstruction, and facilitated neuronal and synaptogenesis, ultimately improving neurofunctional recovery in TBI. RNA sequencing results demonstrated that GC/I/E hydrogel treatment significantly correlated with the regulation of genes such as apoptosis, inflammation regulation, and neural regeneration. This bioactive hydrogel with neuroprotection, inflammation modulation and promotion of angiogenesis has great potential for TBI treatment.