PLoS ONE (Jan 2022)

Bentonite clay with different nitrogen sources can effectively reduce nitrate leaching from sandy soil.

  • Zahid Hussain,
  • Tang Cheng,
  • Muhammad Irshad,
  • Riaz Ahmed Khattak,
  • Chen Yao,
  • Di Song,
  • Muhammad Mohiuddin

DOI
https://doi.org/10.1371/journal.pone.0278824
Journal volume & issue
Vol. 17, no. 12
p. e0278824

Abstract

Read online

Nitrate (NO3-1) leaching from soils results in the lower soil fertility, reduced crop productivity and increased water pollution. The effects of bentonite clay mixed with various nitrogen (N) fertilizers on NO3-1 leaching from sandy soils haven't been extensively studied. Therefore, the present lysimetric study determined NO3-1 leaching from bentonite [0, 2 and 4% (m/m)] treated sandy soil under three N sources (calcium nitrate [Ca(NO3)2], ammonium chloride [NH4Cl], and urea [CO(NH2)2] at the rate of 300 kg N ha-1). Results showed that bentonite markedly reduced NO3-1 release in the leachate, while 4% bentonite retained higher NO3 in the soil. The NO3-1 leaching from sandy soil varied with N sources as Ca(NO3)2 > NH4Cl > (CO(NH2)2. At early stages of leaching, higher concentrations of NO3-1 were detected in leachate with both NH4Cl and Ca(NO3)2, but leaching of NO3-1 increased with urea at later leaching stages. The amount of total NO3-1 retained in soil was conversely related to the amount of NO3-1 in the leachate. This study indicated that soil amendment with bentonite could efficiently mitigate NO3-1 leaching from sandy soil and hence prevent N fertilizer losses and groundwater pollution.