Advanced Materials Interfaces (Jan 2023)

Correlated Metals Transparent Conductors with High UV to Visible Transparency on Amorphous Substrates

  • Phu Tran Phong Le,
  • Shu Ni,
  • Pierre‐Alexis Repecaud,
  • Emma van derMinne,
  • Karin J. H. Van Den Nieuwenhuijzen,
  • Minh Duc Nguyen,
  • Johan E. ten Elshof,
  • Monica Morales‐Masis,
  • Gertjan Koster

DOI
https://doi.org/10.1002/admi.202201335
Journal volume & issue
Vol. 10, no. 1
pp. n/a – n/a

Abstract

Read online

Abstract Correlated metals with high carrier density and strongly correlated electron effects provide an alternative route to achieve transparent conducting materials, different from the conventional degenerately doped wide‐bandgap transparent conducting oxides (TCO). The extremely low electrical resistivity and high optical transparency in the ultraviolet‐visible spectral range shown in 4d correlated metals present an advantage over conventional TCOs. However, most of the 4d correlated metals are grown epitaxially on single crystal substrates. Here, it has been shown that Ca2Nb3O10 nanosheets with different buffer layers promote the growth of high‐quality 4d2 SrMoO3 films on fused silica substrates, overcoming the use of expensive and size‐limited single‐crystal substrates. The room temperature electrical resistivity of SrMoO3 is as low as 61 µΩ cm, the lowest reported value on amorphous transparent substrates to date, without compromising its high optical transmittance. 4d1 correlated metal SrNbO3 on Ca2Nb3O10 nanosheets also exhibits similarly high optical transmittance but a higher room temperature resistivity of 174 µΩ cm. These findings facilitate the use of highly conducting and transparent 4d correlated metals not only as TCOs on technologically relevant substrates for the applications in the ultraviolet‐visible spectral range but also as electrodes for other oxide‐based thin film technologies.

Keywords