Current Research in Neurobiology (Jan 2023)
The use of chemogenetic actuator ligands in nonhuman primate DREADDs-fMRI
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are engineered receptors that allow for genetically targeted, reversible manipulation of cellular activity via systemic drug administration. DREADD induced manipulations are initiated via the binding of an actuator ligand. Therefore, the use of DREADDs is contingent on the availability of actuator ligands. Actuator ligands low-dose clozapine (CLZ) and deschloroclozapine (DCZ) are highly selective for DREADDs, and, upon binding, induce physiological and behavioral changes in rodents and nonhuman primates (NHPs). Despite this reported specificity, both CLZ and DCZ have partial affinity for a variety of endogenous receptors and can induce dose-specific changes even in naïve animals. As such, this study aimed to examine the effects of CLZ and DCZ on resting-state functional connectivity (rs-FC) and intrinsic neural timescales (INTs) in naïve NHPs. In doing so, we evaluated whether CLZ and DCZ – in the absence of DREADDs – are inert by examining these ligands’ effects on the intrinsic functional properties of the brain. Low-dose DCZ did not induce consistent changes in rs-FC or INTs prior to the expression of DREADDs; however, a high dose resulted in subject-specific changes in rs-FC and INTs. In contrast, CLZ administration induced consistent changes in rs-FC and INTs prior to DREADD expression in our subjects. Our results caution against the use of CLZ by explicitly demonstrating the impact of off-target effects that can confound experimental results. Altogether, these data endorse the use of low dose DCZ for future DREADD-based experiments.