Scientific Reports (Aug 2017)

Large-Area Nanolattice Film with Enhanced Modulus, Hardness, and Energy Dissipation

  • Abhijeet Bagal,
  • Xu A. Zhang,
  • Rahnuma Shahrin,
  • Erinn C. Dandley,
  • Junjie Zhao,
  • Felipe R. Poblete,
  • Christopher J. Oldham,
  • Yong Zhu,
  • Gregory N. Parsons,
  • Christopher Bobko,
  • Chih-Hao Chang

DOI
https://doi.org/10.1038/s41598-017-09521-6
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 9

Abstract

Read online

Abstract We present an engineered nanolattice material with enhanced mechanical properties that can be broadly applied as a thin film over large areas. The nanolattice films consist of ordered, three-dimensional architecture with thin-shell tubular elements, resulting in favorable modulus-density scaling (n ~ 1.1), enhanced energy dissipation, and extremely large material recoverability for strains up to 20% under normal compressive loading. At 95.6% porosity, the nanolattice film has demonstrated modulus of 1.19 GPa and specific energy dissipation of 325.5 kJ/kg, surpassing previously reported values at similar densities. The largest length scale in the reported nanolattice is the 500 nm unit-cell lattice constant, allowing the film to behave more like a continuum material and be visually unobservable. Fabricated using three-dimensional colloidal nanolithography and atomic layer deposition, the process can be scaled for large-area patterning. The proposed nanolattice film can find applications as a robust multifunctional insulating film that can be applied in integrated photonic elements, optoelectronic devices, and microcircuit chips.