The Lancet Regional Health. Western Pacific (Jul 2024)

Current and future burden of Ross River virus infection attributable to increasing temperature in Australia: a population-based studyResearch in context

  • Yohannes Tefera Damtew,
  • Blesson Mathew Varghese,
  • Olga Anikeeva,
  • Michael Tong,
  • Alana Hansen,
  • Keith Dear,
  • Ying Zhang,
  • Geoffrey Morgan,
  • Tim Driscoll,
  • Tony Capon,
  • Michelle Gourley,
  • Vanessa Prescott,
  • Peng Bi

Journal volume & issue
Vol. 48
p. 101124

Abstract

Read online

Summary: Background: Ross River virus (RRV), Australia's most notifiable vector-borne disease transmitted through mosquito bites, has seen increased transmission due to rising temperatures. Quantifying the burden of RRV infection attributable to increasing temperatures (both current and future) is pivotal to inform prevention strategies in the context of climate change. Methods: As RRV-related deaths are rare in Australia, we utilised years lived with disability (YLDs) associated with RRV infection data from the Australian Institute of Health and Welfare (AIHW) Burden of Disease database between 2003 and 2018. We obtained relative risks per 1 °C temperature increase in RRV infection from a previous meta-analysis. Exposure distributions for each Köppen-Geiger climate zone were calculated separately and compared with the theoretical-minimum-risk exposure distribution to calculate RRV burden attributable to increasing temperatures during the baseline period (2003–2018), and projected future burdens for the 2030s and 2050s under two greenhouse gas emission scenarios (Representative Concentration Pathways, RCP 4.5 and RCP 8.5), two adaptation scenarios, and different population growth series. Findings: During the baseline period (2003–2018), increasing mean temperatures contributed to 35.8 (±0.5) YLDs (19.1%) of the observed RRV burden in Australia. The mean temperature attributable RRV burden varied across climate zones and jurisdictions. Under both RCP scenarios, the projected RRV burden is estimated to increase in the future despite adaptation scenarios. By the 2050s, without adaptation, the RRV burden could reach 45.8 YLDs under RCP4.5 and 51.1 YLDs under RCP8.5. Implementing a 10% adaptation strategy could reduce RRV burden to 41.8 and 46.4 YLDs, respectively. Interpretation: These findings provide scientific evidence for informing policy decisions and guiding resource allocation for mitigating the future RRV burden. The current findings underscore the need to develop location-specific adaptation strategies for climate-sensitive disease control and prevention. Funding: Australian Research Council Discovery Program.

Keywords